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Abstract 
This paper deals with the problem of enhancing 

the versatility of V L S I  processor arrays without un- 
due addition of hardware, tinae/control overhead, and 
software complexity. A promissing approach to this 
problem is based on matrix computations carried out 
through the Faddeev algorithm. In  th.e paper, we design 
a fixed-size, linear array architectu.re .with fully lo- 
cal communications and, rather, straightforward con- 
trol requirements. This high.-throughput, systolic-type 
architecture allows us io  minirnize both. I /O require- 
ments a n d  the number of processing elements perform- 
ing complicated operations like diuisions. To derive 
the array from a formal description of the Faddeev 
algorithm based on Gaussian elimination with partial 
pivoting, we use purposive transformations of tAe basic 
dependenze graph of the algorithm. before its space-time 
mappings onto array architectures. 

1 Introduction 
Recent, advantages in VLSI technology have 

stimulated research in applica.tion-specific architec- 
tures which are tailored to particular applications. 
Among these architectures are application-specific 
processor arrays, which can have a different degree 
of specialization [I]. Systolic-type arrays [1,2] are 
examples of such architectures. Using massive paral- 
lelism/pipelining, these VLSI processor networks ex- 
ploit the regularity inherent in many algorithms to 
achieve high performance while keeping local commu- 
nications and low 1 /0  requirements. 

One of the principal problems encountered in 
designing these arrays is that of providing a suf- 
ficiently general range of functionality without un- 
due addition of hardware, time/control overhead, and 
software complexity. A promissing approach to this 
problem is based [3,4] on the generality of linear (or 
matrix algebra), a class of operations whiclie arises 
in a wide variet,y of application area.s, including signal 
and image processing, real-time control, modelling and 
simulation, etc. 

In computational linear algebra, the Faddeev algo- 
rithm [4,5,6,7,8,9] is inherently versatile. It enables 
one to perform many matrix operations including ad- 
dition, multiplication, inversion, LU-decomposi tion, 
solution of linear systems, etc. 
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Since the underlaying procedure to  carry out the 
Faddeev algorithm is matrix triangularisation, any 
processor array performing the algorithm should be 
based [8] on an architecture which can realize trian- 
gularisation efficiently. The triangular systolic array 
developed by Kung and Gentleman [lo] is a common 
platform for two-dimensional (2-D) systolic architec- 
tures [4, 6, 7,  8, 93. which perform the Faddeev algo- 
rithm using either Gaussian elimination with neigh- 
bour pivoting or orthogonal triangularisation. The 
second approach is numerically stable but it requires 
relatively complex processing elements (PES). Some of 
them must perform square root operations, which are 
not easily implementable for real-time applications. 
On the other hand, Gaussian elimination architectures 
employ simple PES. But Sorenson has shown [ll] that 
the error bound for pairwise pivoting is much worse 
than that for Gaussian elimination with partial pivot- 
ing [3], as well as, for orthogonal triangularisation. 

This paper deals with the design of linear proces- 
sor arrays which perform the Faddeev algorithm using 
Gaussian elimination. Unlike 2-D architectures, these 
one-dimensional (1-D) arrays allow one [12], firstly, to 
minimize the amount of 1 / 0  channels because they 
are connected only with the first or/and the last PE. 
Secondly, a large structure can be constructed simply 
by concatenation of smaller arrays. Thirdly, a h e a r  
array requires memory bandwidth which is indepen- 
dent of the size of the array. In the paper, we employ 
partial pivoting instead of neighbour pivoting. When 
processing time for linear architectures is considered, 
neighbour pivoting has not any advantage over partial 
pivoting [13] being much less reliable. 

The paper is organized as follows. At first (Section 
a), we describe the choseii version of the Faddeev 
algorithm and some applications of it. The next 
section deals with a basic dependence graph of the 
algorithm. This graph is then used (Sectiou 4) for 
the desigil of linear array architectures performing 
the algorithm. To derive arrays with desired features, 
some purposive transformations of the basic graph are 
employed before space-time mappings of graphs onto 
array architectures. Since the arrays derived in this 
way feature a strong dependence of their sizes upon 
sizes of matrices being processed, we show (Section 5) 
how these architectures should be modified in order to  
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process large size matrices on fixed-size arrays. Sec- 
tion 6 provides conclusions. 

2 Faddeev algorithm and its applica- 
tions 

Starting with N x N ,  N x R, P x N and P x 
R input matrices A , B , C  and D,  respectively, the 
Faddeev algorithm is intended [5] for solving matrix 
equations of the type 

x = CA-' + D (1) 

where the four input matrices form an ( N  + P )  x ( N  + 
R) joint matrix F when arranged in the following way: 

A B  
F = [  -C D ]  

The essence of the Faddeev algorithm [4, 51 consists 
in reducing the lower left quadrant of the matrix F 
(i.e. C-matrix) to zero matrix, while in the lower right 
quadrant of the matrix F (i.e. in  place of D-matrix), 
the resultant P x R matrix X is formed. To carry 
out the above-stated operations with A being a non- 
singular matrix, Gaussian elimination is used. Hence, 
in the course of computations, t.he joint matrix F is 
being transformed into the following matrix: 

[: :] 
where R is the upper triangular matrix. A consid- 
erable degree of versatility of the Faddeev algorithm 
stems from the fa.ct that  Eq. 1 allows us to  solve a set 
of problems. Some of them are listed below: 

0 solving a system A X  = B of linear algebraic 
equations with one or more right-hand sides (de- 
pending upon the number of columns in X), i.e. 

X = A - ' B  for C = I , D = O  

where I is the identity matrix; 

0 matrix multiplication X = CB for A = I, D = 0 ;  

0 matrix multiply-add operation 

0 matrix inversion X = A-' for C = B = I, D = 0. 

There are [7, 81 other important modifications of the 
Faddeev algorithm. As a result, it can be employed, 
for example, in fast solving of linear programming 
problems using the Karinarkar algorithm. 

To provide numerical stability of t.he Faddeev al- 
gorithm, we employ Gaussian elimination with partial 
pivoting within columns [3, 131. As a result, a t  the i-th 
step (i = 1! . . . , N )  of the algorithm, the elimination of 
elements f j i  ( j  = i+l, . . . , N + P ) ,  which belong either 

X = CB + D 
for A =I ;  

to the original matrix F = F' (for i = 1) or to the par- 
tially transformed matrix F' (for i > l), is preceeded 
by successive comparisons of ffi ( j  = i + 1,.  . . , N )  
with the pivot element fji. If 

I ffi I > I fiii I 
then the i-th and j-tli rows of the matrix Fi are in- 
terchanged, and a boolean variable vji is set to  1. In 
the opposite case, the row interchange does not take 
place, and Vj' is set to  0. 

After completing all compafisons and interchanges 
for a given step, the pivot row f j  = [fik] with the pivot 
element f:i is finally derived, where k = i, . . . , N + R. 
Then the elimination of elements fjj (j = i+l ,  . . . , N +  
P )  starts. It is accompanied by transformations of 
rows of the matrix F, from the ( i  + 1)-st row to the 
( N  + P)-th row. These transformations consist in the 
element-by-element summation of each row with the 
pivot row, whicli is,in advanced multiplied by coeffi- 
cient m.j; = -fji/f&. 

Thus, to provide a correct realization of the algo- 
rit,hm, the selection of pivot elements as well as cor- 
responding interchanges are limited only to  the upper 
(corresponding to  the matrices A and B )  quadrants 
of matrices Fi. However, the elimination process is 
carried out within all quadrants of F'. Naturally, in 
the N-th step, the element #N. is immediately taken 
as a pivot, without any comparison. 

The described-above version of the Faddeev algo- 
rithm can be expressed in the following form: 
f o r  i : =  i s tep  1 u n t i l  N do 

{se lect ion of the pivot  element 
u i th in  the i - th  column) 
f o r  j : =  i+i s t e p  1 u n t i l  N do 
begin 

if abs(f [ i , i ] )  < abs(f [ j , i ] )  then 
begin 

s : = f [ i , i ] ;  f [ i , i ] : = f C j , i l ;  f C j , i l  :=si 
v[j , i l : =  true;  

end 

Crow interchanges) 
f o r  k : =  i+l step  i u n t i l  N+R do 

i f  v [ j  , i] = true then 
begin 
s:=f [i,k]; f [ i ,k]  :=f Cj ,kl ; f Cj ,kI :=s; 

end ; 

e l s e  vCj , i l  := f a l s e ;  

end j ;  
{calculation of mult ipl iers  m C j  , i l l  
f o r  j:= i+ i  s tep  I u n t i l  N+P do 
i f  f C i , i ]  = 0 then mCj, i l :=  0 

e l s e  m C j  , i J  := -f Cj , i l / f  C i , i l ;  
(transformations of rows of the  

jo int  matrix, from the  ( i + l ) - s t  
row t o  the (N+P)-th one) 

f o r  j:= i+i  s tep  I u n t i l  N+P do 
for  k : =  i+i  steD i u n t i l  N+R do 

(2) 
f [ j ,k] :=  f C j , k l - +  m{j , i l*fCi ,kl  

end i 
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3 Basic dependence graph of the Fad- 
deev algorithm 

statements 
in algorithm (2), the order of execution of its opera- 
tors is unambigously determined before computations. 
This allows us to  construct 111 its dependence graph 
(DG) called the basic DG and denoted by G B .  It cor- 
responds to  the execution of algorithm (2) in accor- 
dance with the given lexicographical order. Nodes of 
GB are distribuJed in nodes of the three-dimensional 
lattice QB = {A' = ( i , j , k )  : 15 i 5 N, i +  15 j 5 
N + P, i 5 IC 5 N + R}. This lattice can be visualized 
as a truncated pyramid possessing a rectangular base 
with the size of ( N  + R)  x ( N  + P - 1) nodes. The 
height of the lattice is N units (or layers). 

The graph GB is shown in Fig. 1, where N = 4, R = 
P = 1. It should be noted that the i-th layer of G B  
(i = 1 , .. . , N - 1) is composed of two sublayers for 
which we assume z = 1 or z = 2. We will call these two 
sublayers pivot or elimination sublayer, respectively. 
The first sublayer with z = 1 consists of ( N  - i) x 
( N  + R - i + 1) subnodes, and corresponds to the 
selection of the pivot element within the i-th column 
of the matrix F', as well as, to the described-above 
interchanges of its rows, from the i-th row to the N-th 
row. These interchanges are carried out under the 
control of boolean variables vJi generated during the 
selection process, where j = i + 1, . . . , N .  The second 
sublayer with z = 2 consists of ( N  + P - i) x ( N  + R - 
i + 1) subnodes, and corresponds to the computation 
of coefficients mji, where j = i+ 1, . . . , N + P ,  followed 
by transformations of rows of the joint matrix, from 
the (i-t 1)-st row to the ( N + P ) - t h  row. The highest, 
N-th layer of GB is composed of only the elimination 
sublayer with P x ( R  + 1) subnodes. 

The data  dependencies (or arcs) between nodes of 
the graph G g  are represented by the following vectors: 
dl = [100]', dz = [O10It, d3 = [ O O l ] ' ,  de = [110]'and 
d5 = [0 i - N 01'. Note that dl and d4 correspond to 
the passing of variables f ; k  and f&. , respectively, froin 
the elimination sublayer of the previous, (i- 1)-st layer 
( i  # 1) to either the pivot sublayer of the actual, i-th 
layer, if j 5 N , or to  the elimination sublayer of this 
layer, i f j  > N .  For i = 1, the elements of the input 
matrix F are fed into pivot subnodes of the first layer. 
The selection of the pivot row at  the pivot sublayer of 
a layer, as well as the pipeline propagation of this row 
between subnodes of the eliminatioii sublayer of the 
same layer, are described by the vector dz. The vector 
d3 corresponds to the pipeline propagation of boolean 
variables uji or coefficients niji between subnodes of a 
pivot or elimination layer, respectively. 

We take particular note of the vector ds, It cor- 
responds to  the transfer of the pivot row f,", finally 
determined in the pivot sublayer of the i-th layer, to 
the elimination sublayer of the same layer. While 
the rest of vectors correspond to local data depen- 
dencies between nodes of the graph G B ,  the vec- 
tor d5 introduces global dependencies in the graph. 
Besides tBhe above-described data  dependencies be- 
tween nodes of GI, there are also dependencies inside 

In spite of using if . . .then . . .else 

( N - i ) x ( N + R - i + 1 )  nodesofthe i-th layer. Each 
of t,hese dependencies origina.tes in the pivot subnode 
of a node and ends in the elimination subnode of the 
chosen node. They are produced by passing results of 
row interchanges, except for a pivot row, from a pivot 
sublayer to the elimination sublayer. 

4 Design of linear arrays for the Fad- 
deev algorithm 

The DG of an algorithm is known [15] to reflect 
all essential properties of dependencies between its 
operators. That  is why, the above form of parallel 
algorithm represent,ation is used as a basis in many 
methods (e.g. [ I ,  2, 12, 141) for the design of pro- 
cessor arrays. According to these methods, the DG 
is mapped onto structural schemes C =< S,T,O > 
of processor arrays performing the given algorithm, 
where S is the directed graph called the array struc- 
ture, T is the synchronization function, and 0 is the 
set of P E  operation algorithms. For this purpose, the 
DG, which is determined in an integer lattice, is sub- 
ject to a set of monotonic and injective mappings F. 
Each of t.liese mappings, which are usually linear func- 
tions, contains the processor assignment Fs and the 
schedule mapping FT,  where Fs determines a struc- 
ture S, FT determines a function T ,  and both of them 
determine a set a. 

However, these methods can not be regarded as 
complete ones. For example, they neglect a possibility 
to generate not a single variant of DG but. a set of 
them. At the same time, any value of space-time 
mappings must lie within the domain of such parallel 
implementations of the algorithm which are allowed by 
a c.ertain version of its DGs. This version not only de- 
termines permissible topologies of interprocessor con- 
nections, but also partly predetermines the execution 
order for operators of the algorithm. Hence, to obtain 
a wider set of structural schemes performing the given 
algorithm, it is desirable to expand this domain by 
generating a variet,y of DGs for the initial description 
of the algorithm. Such a generation, which is equiva- 
lent to transformations of the basic DG, allows us to 
unfold the inherent properties of the algorithm in OF 
der to use them for deriving array archilectures with 
desired features. 
4.1 Graph transformations in the design 

of arrays for the Faddeev algorithm 
In the graph GB, the critical paths (paths with a 

ma.ximum length) have the length of N ( N  + 5)/2 + 
R+ P - 2 subnodes. It gives the lower hound for the 
t,ota.l computation t%irne t' required by the algorithm 
to process a particular matrix F. Consequently, when 
matrices are processed individually, all 2-D processor 
arrays will manifest the low processor utilization of 
v* = W / ( t * f i )  x O(N-'). Here W M O(N3)  or 
A? x O ( N 2 )  is the number of subnodes i n  the graph 
G B  or PES in a 2-D structure, respectively. 

Before passing on to the design process for 1-D (or 
linear) arrays, we note that the presence of global de- 
pendencies in Gg limits the set of array structures S 
with fully local communications between PES. Indeed, 
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Figure 1: Basic DG for algorithm (2). 
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for 2-D structures, on1 the projection of the graph 
along the vector r* = TO 101 satisfies this condition. 
Hence, to  simplify the design of 1-D array structures, 
we transform the three-dimensional graph GB into a 
2-D graph G*, by projecting G B  along the vector r'. 
As a result, ah nodes lying at  a straight line parallel to 
r* merge into a single macronode, which represents a 
macrooperation performed on an entire column of F" 
We again transform the graph G;  by composing the 
pivot and elimination sublayers of the i-th layer of G; 
into one layer, where i = 1 , .  . . , N - 1. Having done 
this, we get the graph G I .  It is shown in Fig. 2a, where 
N = 6, R = 3. The diagonal macronodes with coor- 
dinates (i, i), where i = 1 , .  . . , N ,  correspond to the 
selection of pivots and generation of boolean variables 
v j i ,  j = i + 1 , .  . . , N , as well as, to  the computation 
of coefficients mji, where j = i + 1 , .  . . , N + P .  An 
off-diagonal macronode with coordinates (i, k), where 
k = i + 1, . . . , N ,  corresponds to interchanges of 
elements within the k-th column of the matrix F', and 
subsequent calculations of elements of the k-th column 
of Fit'. 

A set of 1-D structures S with fully local intercon- 
nections correspond to  the 2-D graph G I .  One of them 
is the structure SI, which is shown in Fig. 2b, where 
N = 6, R = 3. This structure, which corresponds to 
the projection of G1 along i-axis, contains N PES of 
the first type, i.e. having a division unit in addition 
to  a multiplication-addition unit, and R PES of the 
second type, i.e. without a division unit. 

The drawbacks of the structure S1 are compara- 
tively large numbers of PES and 1 / 0  channels, as well 
as, the presence of N PES containing division units. 
These shortcomings can he eliminated by projecting 
the graph G1 along the vector r = ( 1 , l ) .  As a result, 
we get the structure S2, which is shown in Fig. 2c, 
where N = 6, R = 3. While having the same number 
of PES as SI, the structure Sa has only one PE with a 
division unit. Another property of Sa is the presence 
of data links which originate in the s-th PE and ends 
in the (s - 1)-th PE, where s = 2, .  . . , N + R. These 
links are responsible for the interprocessor transfer of 
variables f!", which are calculated at  the i-th step 
of the algorithm. Moreover, after executing the i-th 
step, the ( N  + R - i + 1)-th PE transfers their inter- 
mediate results to  the ( N  + R - i)-th PE, and then 
ceases to  participate in computations. 

In view of practical realization, the structure S2 still 
suffers from a number of shortcomings, the most sig- 
nificant of which is a large number of 1 / 0  channels. 
This drawback can be easily avoided if we project 
the graph GI along k-axis. This projection results 
in the structure S3, which has only N PES (see Fig. 
3d). Moreover, only the first and the last PES of this 
structure perform 1 / 0  operations. Manifesting these 
advantages, the structure Ss suffers, however, from 
the limitation that all its PES must perform divisions 
in addition to  multiply-add operations, 

To obtain such a structure S which, while retain- 
ing the above-stated advantages of &, minimizes the 
number of PES containing a division unit, we try to 
transform the triangular part of the graph G1, with 

J k  

the rectangular part being fixed. For this purpose, we 
place all diagonal macronodes of the graph G1 along 
k-axis, and then redraw the graph GI preserving all 
interconnections between its macronodes. This trans- 
formation can be thought as a rotation of the triangu- 
lar part of GI by an angle of 45' clockwise. As a result, 
coordinates ( i ,  K )  of macronodes of the triangular part, 
where i = 1, .  . . , N, K = i, . . . , N ,  are changed accord- 
ing to the followingformulw: k* = k, i' = N-k+i. In 
this way, we derive an intermediate graph G;,  which is 
shown ( N  = 6, R = 3) on the left-hand of Fig.3a, while 
the structure Sq, which corresponds to  the projection 
of G2 along k*-axis, is presented on the right-hand. 
Therefore, we now have a structure which consists of 
N PES; only its last PE contains a division unit. How- 
ever, the number of 1 / 0  channels is still very large, and 
it depends on N .  

In order to  reduce this number to  one, we complete 
the graph G ;  with "empty" macronodes, which pro- 
vide the input of matrix F in accordance with Fig.3b, 
where the resulting graph Gz is depicted. After pro- 
jecting it along k*-axis, we obtain the structure S5 
shown on the right-hand of Fig. 3b. Since we have 
restricted the input of F-matrix to only the border 
macronodes of G2, this matrix is fed into the structure 
S5 by means of a single input channel. Lastly, to  com- 
plete the design of a structural scheme C5 which cor- 
responds to both the graph Gz and structure S5, we 
derive a schedule mapping F f ,  using the generalized 
mapping methodology [l]. Aiming a t  the minimiza- 
tion of the algorithm exection time and assuming only 
linear mappings, we obtain the following schedule: 

F;( I?', z) = ( N + P  - l) i* +j+(  N + P)k* +( N - l ) z+c  

Here I?* E &*, and 

Q* = { K * = ( i * , j , k * ) :  l < i * < N ,  1 s j  
5 N + P, 1 5 k* 5 N + R} ,  z E Z = {1,2} 

and c is a constant chosen in such a way that 

As a result, we have c = -3N - 2P + 2. 
The scheme Cs is a linear array with N PES; only 

the last PE contains a division unit, while the rest. of 
PES, which are of the same t,ype, are not provided with 

the N-th PES are detailed in Fig.4a and Fig. 4 b , and re- 
it. The internal structures of the k*-th (IC* # N 

spectively, where D(N-l), D(N+P) and D(P) are delay 
lines (or FIFO-buffers) with corresponding lengths, M 
denote multiplexers, R denote registers, C is a com- 
parator, and DV is a division unit. In the buffer 
D(N+P), the width of its words is sufficient to store 
coefficients mji and boolean variables vj~j", 

When matrices are processed individually, the 
structural scheme synthesized above manifests the 
tot.al execution time of 
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Figure 2: Design of linear arrays based on the basic DG: (a) basic DG after reducing its dimension; 
(b) structure SI; (c) structure S2; (d) structure Ss. 
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Figure 3: Design of linear arrays, using transformations of the basic DG: (a) intermediate DG and 
structure S, corresponding to it; (b) resulting DG and structure Ss corresponding to it; (c) DG 
partitionning for the LPGS scheme; (d) fixed-size linear array for the Faddeev algorithm. 
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time steps, where 

F$([N A'+ P N + RI, z = 2) 

so that 

t; = ( N  + R - 1)(N + P )  + ( N  + P - 1)N + N 

steps. The processor utilization can be estimated as 
17; = W/(tgA?), where M = N is the number of PES 
in the array, and W is the computational complexity 
of algorithm (2). Since W is given by N 3 / 3 + N 2 ( P +  
R)/2 + N P R  divisions and multiply-add operations, 
we have q* R 0.39 for N = P = R. To improve the 
processor utilization, a number of matrices need to be 
processed sequentially. Because a new matrix F can b: 
processed as soon as the input of the previous matrix F 
is completed, the above scheme is characterized by the 
block pipelinig period [l] of tt = ( N +  P ) ( N +  R)  steps 
and the average processor utilization of q; = W/( t ;  x 
&f) R 0.58 for N = P = R. Note that with an increase 
in parameters P or/and R, the processor utilization 
also increases. For example, when P = R = 2N or 
N = P, R = 4N, we have q; M 0.53, 11; M 0.7 or 
q; x 0.57, q; R 0 .68 .  
4.2 Design of fixed-size linear array 

A basic requirement in practical system designs for 
linear algebraic problems is an ability to process large 
size matrices on processor arrays wi th  a fixed nuin- 
ber of PES [2]. To provide this ability, two partition- 
ing methods 1 are usually used: locally sequential 
globally para1 I t  e (LSGP) method and locally parallel 
globally sequential (LPGS) method. Both of them are 
based on the decomposition of a DG into a set of reg- 
ular subgraphs, but differ in the way how these sub- 
graphs are mapped onto resulting structural schemes. 
In the LSGP method, one subgraph is mapped to one 
PE, and each PE sequentially executes the nodes of 
the corresponding subgraph. Therefore, an additional 
local memory within each PE is needed. 

To avoid this disadvantage, one subgraph is 
mapped to  one array in the LPGS method. All nodes 
within one subgraph are processed concurrently, while 
all subgraphs are processed sequentially. As a result, 
all intermediate data which correspond to  data depen- 
dencies between subgraphs can be stored in buffers 
outside the processor array. We employ this scheme 
in order to  implement the Faddeev algorithm on a lin- 
ear array with n < N PES, where n is a fixed number. 
Starting with the graph GI,  we try to  decompose it 
into a set of s = N / n [  subgraphs having the "same" 
topology, where ]x[ denotes the nearest integer equal 
to  or greater then x. As evident from Fig. 2a, this 
can be done only if we "cut" the graph G I  using a set 
of straight lines parallel to k-axis. These lines decom- 
pose the graph GI into regular subgraphs GP with 
n layers each, where q = 1 , .  . . ,s. Then, the above- 
described (Subsection 4.1) rotation of the triangular 
part of GI by an angle of 45' is individually used for 

every GP. Lastly, after completing each of subgraphs 
with "empty" niacronodes, a set of s subgraphs G t  
with the "same" topology is obtained (see Fig. 3c). 
Using the LPGS method and taking into account the 
way how the structural scheme C5 has been derived 
from the graph Gz, we come to the conclusion that  by 
providing this scheme with an external FIFO buffer 
for storing and recirculating the intermediate data,  a 
fixed-size processor arrays for the Faddeev algorithm 
can be obtained (see Fig. 3d). 

For the possible variants of implementing the array, 
it will manifest different performance characteristics. 
The simplest variant assumes that lengths of all FIFO 
buffers are constant during the execution of the al- 
gorithm. In this case, FIFO buffers within PES have 
lengths of N - 1, N + P and P cells, respectively, while 
the external buffer contains Le, = ( N + P ) ( N + R ) - c '  
cells, where c* = n ( 2 ( N + P ) - l ) - P + l .  Executing al- 
gorithm (2),  the fixed-size processor array has now to 
perform a computational work which corresponds to 
the volume of the solid shown in Fig. 5a. As a result, 
the total execution time is maximum. It is given by 
the following expression: 

t;,l = s ( N  + P ) ( N  + R)  
+ ( N  + P - l ) (n - 1) + ( N  - 1) (3) 

Here the first component takes into account the time 
interval -required by the input of both the original 
matrix F = F' and intermediate matrices F", where 
r = n,  2 7 1 , .  . . , (s - 1)n. The rest of the components 
correspond to the subsequent completion of computing 
the resultant matrix FN+'. Note that all intermediate 
matrices F" are extended to  ( N + P ) x  ( N + P )  matrices 
by introducing "dummy" elements. 

To reduce the execution time without having to  
control lengths of FIFO buffers within PES, only the 
length Le,  of the external buffer can be varied in 
the course of computations. In this case, for storing 
elements of a matrix F' which are generated as a 
result of processing the q-th subgraph, where r = q x 
n,  q = 1,. . . , s-1, we should provide L:! = ( N + P )  x 
( N  + R - n(q - 1)) - c* cells. Executing the Fad- 
deev algorithm, the processor array will now perform a 
computational work which corresponds to  the volume 
of the solid depicted in Fig.5b. Hence, the total 
execution time will be given by 

s 

t;,z = { C ( N  + R - 4 q -  1))(N + PI1 
q = l  

+ ( N  + P - l ) (n  - 1) + ( N  - 1) (4) 

where the components have the same meaning as 
before. Note only that all intermediate matrices F' 
are now extended to ( N  + R - n(q - 1)) x ( N  + P )  
matrices. After transforrniiig Eq. 4, we obtain finally 

t;,a = s ( N  + P ) ( N  + R) 
- sn(s - l ) ( N  + P ) ( N  - n)/2 
+ ( N + P - l ) ( n - l ) + ( N - l )  (5) 
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Figure 4: Internal structures of PES: (a) k-th PE, where k = 1,.  . . , N - 1; (b) N-th PE. 
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Figure 5: Computational work corresponding to different variants of implementing the fixed-size 
array: (a) lengths of all FIFO buffers are constant; (b) only the length of the external buffer are 
varied; ( c )  lengths of both the external buffer and buffers within PES are varied. 

40 



Lastly, varying lengths of all FIFO buffers, we can 
achieve a further decrease in the total execution time. 
In this case, after executing the q-th subgraph, those 
internal FIFO buffers which are denoted by D(N+P) 
and D( N - 1) in Fi ,4 should contain N + P - n ( q  - 1) 
and N - n q - 17 cells, respectively, while for the 

Lzz = ( N  + P - ( q  - l)n)(N + R - ( q  - 1)n) - C# 

external bu d er we should provide 

cells, where 

c# = n{2(N + P - ( q  - 1)n) - 1 )  + P - 1 

The processor array will now perform a work which is 
given by the volume of the solid presented in Fig. 5c. 
As a result, the total execution time is minimum. It 
can be expressed by the following formula: 

3 

t;,3 = C ( N  + R - n(q - 1))(N + P - n(q - 1)) 
g=l 

+ ( N  + P - n(q - 1) - l)(n - 1) 

+ ( s  - l)(n(n - 1) - 1) 
+ ( N  - n(q - 1) - 1) 

(6) 

All but the last components of Eq. G have the 
same meaning as before. The presence of the last 
component reflects the fact that the loadin of an in- 
termediate matrix F‘ can start only n(n - lf - 1 steps 
after the processing of the previous matrix Fr-’ is 
completed. The final form of Eq. 6 is as follows: 

t:,3 = s (N  + P ) ( N  + R)  - ST*(S - 1)(2N 4 P + R)  
+ n2s(s  - l)(2s - 1)/G 
+ n ( N  + P - n(q - 1) - 1 )  
+ (s - l ) (n(n - 1) - 1) (7) 

For small values of the parameter s =IN/??[, tlie 
implementation of the above-described variants results 
in small differences in the total execution time. For 
example, i f s  = 2 and N = P = R, t,hen f &  = 8N2,  
t l , 2  x 7N2 and t;,3 G.33N2. But when N >> 1 1 ,  

these differences become more essent,ial. Indeed, for 
N mod n = 0, Eqs- 3,  5 and 7 can be reduced to the 
following formulae: 

t;,l x s ( N  + P ) ( N +  R)  
t;,2 “ s ( N  + P ) ( N  + R)  - ( s  - 1)(N + P ) N / 2 ,  
t;,3 s ( N + P ) ( N +  R) - 

(s - 1)(2N + P + R)N/2 + (s - 1)N2/3 

Using these formulae and supposing as before that 
N = P = R, we obtain t;,l x 40N2, t;,2 w 31n2, 

25N2 fors  = 10, and t<,l x 400N2, f;,2 w 301 x 
N 2 ,  w 235N2 for s = 100. Finally, when s -- 00, 
we have M (12/7)t{,3, 1;,2 w (9/7)t;,,, and v; ,~ = 
7/12 x 0.58, )75:2 x 7/9 x 0.78, t5:3 x 1.  

Therefore, the third variant of implementing the 
fixed-array allows us to  optimize both the total 
execution time and processor utilization. From this 
point of view, the second variant is not so efficient, 
but unlike the third variant it does not require to  vary 
lengts of FIFO buffers within PES. This advantage 
considerably simplifies a practical realization of the 
array. 

5 Coiiclusioiis 
One ot the principal probleiiis encountered in the 

design of VLSI processor arrays is that  of providing 
a suficiently general range of functionality without 
undue addition of hardware, time/control overhead, 
and software complexity. A promising approach to 
this problem is based on implementatmion of the Fad- 
deev algorithm for computing the matrix expression 
X = CA-lB + D ,  where A, B, C and D are N x N ,  
N x R, P x N and P x R matrices, respectively. 

In this paper, we have designed a new architec- 
ture of linear array performing the Faddeev algorithm 
based on Gaussian elimination with partial pivoting. 
Unlike 2-D (or planar) architectures, this 1-D array 
allows us to minimize the amount of 1/0 channels 
because these channels are connected only with the 
firsl and the last PES of the array. To derive it, 
some purposive transformations of the basic depen- 
dence graph of tlie algorithm have been used before 
the space-time mapping of the graph ont80 the archi- 
tecture. 

Another importmalit feature of the resulting array, 
which contains N PES with FIFO buffers, is that all 
the coniplicated operations like divisions are carried 
out by the same boundary PE,  whereas other PES 
perform multiplication-additions. This Faddeev-based 
array architecture manifests a simple scheme of fully 
local communications, as well as, the block pipelining 
period of ( N  + P ) ( N  + R) time steps. This value is 
minimal for a computing device with a single commu- 
nication channel performing the input of matrices A ,  
B ,  C and D. 

For some computations, the Faddeev-based ap- 
proach will not lead to the most efkient  implemen- 
tations, but tlie enhanced versatility should more 
than compensate for this defficiency. For example, 
to provide the ability to process large size matrices 
on a fixed-size array, the uniform and simple scheme 
for the partitioning of the original dependence graph 
into regular subgraphs could be employed. These 
subgraphs have been then mapped onto the result- 
ing architecture in accordance with the locally parallel 
globally sequential method. As a result, by providing 
the original linear array containing n PES ( n  = const) 
with a single FIFO buffer, the fixed-size, versatile pro- 
cessor array for matrix coniputatioiis has been derived. 
Finally, some performance cliaract<eristics for different 
variants of implenienting this array have been investi- 
gated. 
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